Package: CJIVE 0.1.0

CJIVE: Canonical Joint and Individual Variation Explained (CJIVE)

Joint and Individual Variation Explained (JIVE) is a method for decomposing multiple datasets obtained on the same subjects into shared structure, structure unique to each dataset, and noise. The two most common implementations are R.JIVE, an iterative approach, and AJIVE, which uses principal angle analysis. JIVE estimates subspaces but interpreting these subspaces can be challenging with AJIVE or R.JIVE. We expand upon insights into AJIVE as a canonical correlation analysis (CCA) of principal component scores. This reformulation, which we call CJIVE, 1) provides an ordering of joint components by the degree of correlation between corresponding canonical variables; 2) uses a computationally efficient permutation test for the number of joint components, which provides a p-value for each component; and 3) can be used to predict subject scores for out-of-sample observations. Please cite the following article when utilizing this package: Murden, R., Zhang, Z., Guo, Y., & Risk, B. (2022) <doi:10.3389/fnins.2022.969510>.

Authors:Raphiel Murden [aut, cre], Benjamin Risk [aut]

CJIVE_0.1.0.tar.gz
CJIVE_0.1.0.zip(r-4.5)CJIVE_0.1.0.zip(r-4.4)CJIVE_0.1.0.zip(r-4.3)
CJIVE_0.1.0.tgz(r-4.4-any)CJIVE_0.1.0.tgz(r-4.3-any)
CJIVE_0.1.0.tar.gz(r-4.5-noble)CJIVE_0.1.0.tar.gz(r-4.4-noble)
CJIVE_0.1.0.tgz(r-4.4-emscripten)CJIVE_0.1.0.tgz(r-4.3-emscripten)
CJIVE.pdf |CJIVE.html
CJIVE/json (API)

# Install 'CJIVE' in R:
install.packages('CJIVE', repos = c('https://rmurden.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.78 score 12 scripts 192 downloads 22 exports 46 dependencies

Last updated 2 years agofrom:4532e2a33f. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 26 2024
R-4.5-winOKOct 26 2024
R-4.5-linuxOKOct 26 2024
R-4.4-winOKOct 26 2024
R-4.4-macOKOct 26 2024
R-4.3-winOKOct 26 2024
R-4.3-macOKOct 26 2024

Exports:AdjSigVarExpcc.jivecc.jive.predchord.norm.diffConvSims_ggcreate.graph.longGenerateToyDataGetSimResults_Dirgg.corr.plotgg.load.norm.plotgg.norm.plotgg.rank.plotgg.score.norm.plotMatVarMatVar2Melt.Sim.Corsperm.jntrankscale_loadingsshow.image.2sjivevec2net.lvec2net.u

Dependencies:bitopscaToolsclicolorspacedotCall64fansifarverfieldsggplot2glueGPArotationgplotsgtablegtoolsisobandKernSmoothlabelinglatticelifecyclemagrittrmapsMASSMatrixmgcvmnormtmunsellnlmepillarpkgconfigplyrpsychR6RColorBrewerRcppreshape2rlangrootSolvescalesspamstringistringrtibbleutf8vctrsviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
Adjust Signal Variation ExplainedAdjSigVarExp
Canonical (Correlation) JIVEcc.jive
CJIVE joint subject score predictioncc.jive.pred
Chordal norm between column-subspaces of two matriceschord.norm.diff
Convert simulation study resultsConvSims_gg
Function for plotting networks with ggplotcreate.graph.long
Generate 'Toy' DataGenerateToyData
Retrieve simulation resultsGetSimResults_Dir
Function for plotting Pearson correlations between predicted and true subject scores within the simulation study described in CJIVE manuscriptgg.corr.plot
Function for plotting chordal norms between estimated and true variable loading subspaces within the simulation study described in CJIVE manuscriptgg.load.norm.plot
Function for plotting chordal norms between estimated and true subspaces within the simulation study described in CJIVE manuscriptgg.norm.plot
Function for plotting selected joint ranksgg.rank.plot
Function for plotting chordal norms between estimated and true subject score subspaces within the simulation study described in CJIVE manuscriptgg.score.norm.plot
Matrix variation (i.e. Frobenius norm)MatVar
Alternative calculation - Matrix variation (i.e. Frobenius norm)MatVar2
Converts correlations of predicted to true joint subject scores to a format conducive to ggplot2Melt.Sim.Cors
Permutation Test for Joint Rank in CJIVEperm.jntrank
Scale and sign-correct variable loadings to assist interpretationscale_loadings
Display a heatmap of a matrix (adapted from Erick Lock's show.image function in the r.jive package)show.image.2
Simple JIVEsjive
Convert vector to networkvec2net.l
Convert vector to networkvec2net.u